Unsupervised classification of operator workload from brain signals
نویسندگان
چکیده
منابع مشابه
Unsupervised Classification of Music Signals
This thesis describes the ideal properties of an adaptable music classification system based on unsupervised machine learning, and argues that such a system should be based on the fundamental musical properties of timbre, rhythm, melody and harmony. The first two properties and the signal features associated with them are then explored in more depth. In the area of timbre, the relationship betw...
متن کاملOptical brain monitoring for operator training and mental workload assessment
An accurate measure of mental workload in human operators is a critical element of monitoring and adaptive aiding systems that are designed to improve the efficiency and safety of human-machine systems during critical tasks. Functional near infrared (fNIR) spectroscopy is a field-deployable non-invasive optical brain monitoring technology that provides a measure of cerebral hemodynamics within ...
متن کاملDetection of schizophrenia patients using convolutional neural networks from brain effective connectivity maps of electroencephalogram signals
Background: Schizophrenia is a mental disorder that severely affects the perception and relations of individuals. Nowadays, this disease is diagnosed by psychiatrists based on psychiatric tests, which is highly dependent on their experience and knowledge. This study aimed to design a fully automated framework for the diagnosis of schizophrenia from electroencephalogram signals using advanced de...
متن کاملClassification of EEG Signals for Discrimination of Two Imagined Words
In this study, a Brain-Computer Interface (BCI) in Silent-Talk application was implemented. The goal was an electroencephalograph (EEG) classifier for three different classes including two imagined words (Man and Red) and the silence. During the experiment, subjects were requested to silently repeat one of the two words or do nothing in a pre-selected random order. EEG signals were recorded by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neural Engineering
سال: 2016
ISSN: 1741-2560,1741-2552
DOI: 10.1088/1741-2560/13/3/036008